

Origination	08/2024	Owner	Karen McQuillan: Lead Clinical Nurse Specialist STC
Last Approved	08/2024	Area	Hospital Guidelines
Effective	08/2024	Applicability	UMMC Downtown Campus
Last Revised	08/2024		
Next Review	08/2027		

Guideline for Use of Pupillometry

I. GUIDELINE

A. OBJECTIVES

1. To provide guidelines for the measurement and monitoring of pupillary function of select patients using the NeurOptics® Pupillometer.

B. BACKGROUND

1. Pupillary size, shape, and reactivity to light are key indicators of neurologic function in brain-injured patients, especially in comatose patients. However, this exam performed by a penlight is subjective and variable between assessments and between providers. Common terms such as brisk or sluggish are used to describe pupillary reactivity and pinpoint or moderate are used to describe pupillary size.
2. Automated pupillometry provides objective quantitative measures including maximal diameter, latency, constriction velocity, minimal diameter, and dilation velocity.
 - a. The NeurOptic pupillometer provides the Neurologic Pupil Index (NPi™) which incorporates all the measurements into a single parameter using a proprietary algorithm.
 - b. The NPi™ has been shown to be a predictor of intracranial pressure elevations and may aid in prognostication in select patients such as those on extracorporeal membrane oxygenation following cardiac arrest.
 - c. Current evidence supports automated pupillometry as a tool for accurate and consistent pupil measurement, potentially allowing for earlier recognition of subtle pupil changes and timelier diagnostic and treatment interventions.

3. Findings with Pupillometry that have been found to correlate with increases in ICP:
 - a. Change in pupil size of < 10% between before and after light stimulation.
 - b. CV of < 0.8 mm/s suggestive of increases in brain volume.
 - c. CV of < 0.6 mm/s suggestive of ICP elevation > 20 mmHg or will be elevated within 15-30 minutes.
 - d. Unequal pupils > 1 mm in size difference.
 - e. NPi™ value <3 means the ICP is either >20mmHg or will elevate within 16 hours.
 - f. NPi™ difference between two eyes >0.7
4. For Prognostication:
 - a. ECMO: NPi <3, at any time between 24 and 72 hours of initiation has been found to be 100% specific for 90-day mortality (Miroz et al., 2020).
 - b. Cardiac arrest: At any time between day 1 and 3, an NPi ≤ 2 has been shown to have a 51% (95% CI 49–53) negative predictive value and a 100% positive predictive value [PPV; 0% (0–2) false-positive rate], with a 100% (98–100) specificity and 32% (27–38) sensitivity for the prediction of unfavorable outcome (Behrends, et al, 2012).

C. INDICATION FOR PUPILLOMETER USE

1. Upon admission, select patients should receive a baseline pupil assessment using the NeurOptics® Pupillometer. The frequency of subsequent pupillometer measurements will be based on provider order, patient acuity, and change in patient condition. Patients considered for pupillometry assessment, include but are not limited to:
 - a. Patients with potential for secondary neurologic injury
 - i. Patients require a neurologic exam every 1 hour with close monitoring of pupillary assessment for concerns of neurologic deterioration. At risk for any of the following:
 - a. Cerebral edema
 - b. Elevation in ICP
 - c. Delayed cerebral ischemia (DCI) (Aoun et al., 2020)
 - d. Identification of herniation syndromes
 - ii. Patients with known or suspected neurological injury (e.g., traumatic brain injury, intracerebral hemorrhage, ischemic or hemorrhagic stroke)
 - iii. Patients with intracranial monitoring: ICP, brain tissue oxygen, or considered for cerebral microdialysis
 - iv. Patients undergoing hyperosmolar therapy brain injury
 - v. Seizure/status epilepticus (Godau et al., 2020)

- b. For prognostication
 - i. After Cardiac Arrest (including those undergoing TTM post-arrest)
 - ii. When there are questionable results using a manual pupillary exam

II. DEFINITIONS

Constriction velocity (CV)	The change in size divided by the time during which constriction occurs in response to light (Olson et al., 2017) Average of how fast the pupil diameter is constricting measured in millimeters per second
Dilation Velocity (DV)	The average pupillary velocity when, after having reached the peak of constriction, the pupil tends to recover and to dilate back to the initial resting size, measured in millimeters per second
ECMO	Extracorporeal membrane oxygenation
EHR	Electronic Health Record
GCS	Glasgow Coma Score/Scale
ICP	Intracranial pressure
Latency of Constriction (LAT)	The period from initial light stimulus to the start of pupillary constriction (Olson et al., 2017). Time of onset of constriction following initiation of the light stimulus
Maximum Constriction Velocity (MCV)	Maximum velocity of pupil constriction of the pupil diameter responding to the flash of light measured in millimeters per second
Neurologic Pupil Index (NPI™) (NeurOptics, 2022)	A derived value, calculated by the pupillometer, that compares the reading obtained against normative models (Olson et al., 2017). Normal range (3.0 to 4.9 or “brisk”) Abnormal range (< 3.0 [0.1 – 2.9] or “sluggish”) “Atypical,” “immeasurable,” or “non-reactive” (0)
Percent change of pupil (CON or %CH or % Change)	% of change (Size-MIN) / Size as a %
Pupillary size after a light stimulus (MIN)	Pupil diameter at peak constriction
Pupillary size prior to the light stimulation (MAX or Size)	Maximum pupil size before constriction
ROSC	Return of Spontaneous Circulation
TTM	Targeted Temperature Management

III. RESPONSIBILITY

Provider	<p>Prescribe desired frequency of pupil assessment using the pupillometer. General guidelines:</p> <ul style="list-style-type: none"> • Every 1-hour and PRN – Patients at risk for neurologic decline; More frequent assessments may be indicated in patients with unstable neurologic status. • Consider every 2 hours – Patient follows commands; stable neuropathology > 24 hours; Risk for delirium risk due to sleep disruption > benefit of pupil assessment. • Consider every 4 hours – Stable neurologic exam; no risk for neurologic decline
Nurse	<p>Assess pupils with the pupillometer at prescribed intervals and more frequently during episodes of neurological deterioration (e.g., herniation events)</p> <p>Document pupil assessment findings on the pupillometer display at the prescribed interval in the EHR, including</p> <ul style="list-style-type: none"> • Pupil size and equality • Pupil reactivity as defined by the NPi <p>Perform a neurologic exam if change detected in pupillometry measurement.</p> <p>Notify the provider when significant pupil findings or changes in pupil assessment are found, including</p> <p>NOTE: A downward trend of the NPi may be an indication of impending neurologic deterioration</p> <ul style="list-style-type: none"> • NPi < 3.0 (change from baseline) • Difference in pupil sizes from right to left > 1mm (change from baseline) • Difference in NPi between right and left of greater than 0.7

IV. GUIDELINE

A. EQUIPMENT/SUPPLIES

1. Charging station
2. NPi®-200 Pupillometer
3. Single patient use SmartGuard®
4. Patient identification label

B. GUIDELINE

1. Obtain NPi®-200 Pupillometer from the charging station.
 - a. Green Light on charging station: indicates the device is fully charged

- b. Blue Light on charging station: indicates the device is actively charging
 - c. To turn the device on
 - i. When removed from the Charging Station, the device will wake up automatically
 - ii. If device is in sleep mode, tap the screen, place on the charging station, or press the up arrow/On button to turn it back on
 - iii. If the device had been out of the Charging Station for more than 20 minutes and has powered down, press the On/Off button on the right side of the device to turn it on.
2. Obtain disposable SmartGuard® and place it on the Pupillometer.
 - a. Ensure the SmartGuard® is labeled with a patient identification label and kept in the patient's room for reuse for the duration of the patient admission or until the memory chip is full (168 readings).
3. For first-time use, select either "Manual ID" (keypad touch entry) or "Scan Code" (incorporated wristband barcode scanner) to enter patient medical record number (MRN). If the patient MRN has already been entered, verify the MRN displayed and select Accept.
 - a. NOTE: For patients who are a Trauma Doe, utilize the initial trauma MRN.
 - b. Once the patient has been identified, write the patient's name on the trauma identification label of the SmartGuard® to maintain the history within the microchip.
4. Select right or left eye to be scanned and position the Pupillometer in front of this eye.
 - a. The SmartGuard should be positioned with the foam pad at the patient's cheekbone below the eye with the Pupillometer at a right angle to the patient's axis of vision, minimizing any tilting of the device.
 - b. Hold open the eyelid or ask patient to hold the eyelid in the open position.
5. Press and hold the corresponding RIGHT or LEFT button
 - a. Reposition the Pupillometer as needed (avoid tilting the device) until the pupil is centered on the screen and encircled by a green ring, indicating the pupil is targeted.
 - b. A red frame around the screen indicates the pupil needs to be re-centered on the screen before the measurement is initiated.
6. Once the green ring appears, release the button and hold the Pupillometer in place for approximately three seconds until results are analyzed and displayed on the screen.
7. Repeat the scan procedure for the patient's other eye to complete the bilateral pupil exam.
8. If the result shows in red and reads "Rescan", there was an error with the reading.

Repeat the measurement for this eye.

9. View Results

- a. When the bilateral pupil exam is complete, the measurement results will be displayed in green for the RIGHT eye and yellow for the LEFT eye.
- b. The difference between right and left eye values will also be shown in the third column.
- c. Additional measurements are found on "Results page 2".

10. Document required values

- a. Size and NPi® are found on results screen 1/2 on the Pupillometer.

11. Remove SmartGuard® and leave at the patient's bedside.

12. Disinfect the Pupillometer and place it back into the charging station for recharging.

- a. Isopropyl alcohol (IPA)-based cleaning solutions, in formula concentrations up to 70% IPA, are recommended for use in cleaning the NPi-300.
- b. To avoid corrosion, ensure the charging prongs are dry prior to placing back on charging station.
- c. Be sure to allow appropriate disinfectant dwell time prior to use on another patient.
- d. If using a bleach-based solution or wipe, allow appropriate dwell time and remove residue using a non-bleach wipe.

13. Dispose of the SmartGuard® in a red biohazard waste receptacle, due to the presence of protected health information within the microchip, when patient monitoring is complete.

C. **NOTE:** This Guideline was developed with input from the NCCU Clinical Practice Council Guidelines

V. REPORTABLE CONDITIONS

A. Nurse should notify the provider when significant pupil findings or changes in pupil assessment are found, including

1. NPi < 3.0 (change from baseline)
2. Difference in pupil sizes from right to left > 1mm (change from baseline)
3. Difference in NPi between right and left of greater than 0.7
4. **NOTE:** A downward trend of the NPi may be an indication of impending neurologic deterioration

VI. DOCUMENTATION

A. Provider should prescribe desired frequency of pupil assessment using the pupillometer.

B. Nurse should document pupil assessment findings on the pupillometer display at the prescribed interval in the EHR, including

1. Pupil size and equality
2. Pupil reactivity as defined by the NPI

VII. SUPPORTIVE INFORMATION

A. REFERENCES

1. Al-Obaidi, S.Z., Atem, F.D., Stutzman, S.E., Olson, D.M. Impact of increased intracranial pressure on pupillometry: a replication study. *Critical Care Explorations*, 2019;1: 10, e0054. doi: 10.1097/CCE.0000000000000054
2. Aoun, S. G., Stutzman, S. E., Vo, P. U. N., El Ahmadieh, T. Y., Osman, M., Neeley, O., Plitt, A., Caruso, J. P., Aiyagari, V., Atem, F., Welch, B. G., White, J. A., Batjer, H. H., & Olson, D. M. (2020, January). Detection of delayed cerebral ischemia using objective pupillometry in patients with aneurysmal subarachnoid hemorrhage. *Journal of Neurosurgery*, 132(1), 27–32. <https://doi.org/10.3171/2018.9.jns181928>
3. Aoun, S. G., Welch, B. G., Cortes, M., Stutzman, S. E., MacAllister, M. C., El Ahmadieh, T. Y., Osman, M., Figueroa, S. A., White, J. A., Batjer, H. H., & Olson, D. M. (2019, January). Objective Pupillometry as an Adjunct to Prediction and Assessment for Oculomotor Nerve Injury and Recovery: Potential for Practical Applications. *World Neurosurgery*, 121, e475–e480. <https://doi.org/10.1016/j.wneu.2018.09.140>
4. Behrends, M., Niemann, C. U., & Larson, M. D. (2012, October). Infrared pupillometry to detect the light reflex during cardiopulmonary resuscitation: A case series. *Resuscitation*, 83(10), 1223–1228. <https://doi.org/10.1016/j.resuscitation.2012.05.013>
5. Chen, J., Gombart, Z., Rogers, S., Gardiner, S., Cecil, S., & Bullock, R. (2011). Pupillary reactivity as an early indicator of increased intracranial pressure: The introduction of the neurological pupil index. *Surgical Neurology International*, 2(1), 82. <https://doi.org/10.4103/2152-7806.82248>
6. Chen, J.W., Vakil-Gilani, K., Williamson, K.L., Cecil, S. (2014). Infrared pupillometry, the Neurological Pupil index and unilateral pupillary dilation after traumatic brain injury: implications for treatment paradigms. *SpringerPlus*, 3:548. Doi:10.1186/2193-1801-3-548
7. Cortes, M. X., Siaron, K. B., Nadim, H. T., Ahmed, K. M., & Romito, J. W. (2021, June). Neurological Pupil Index as an Indicator of Irreversible Cerebral Edema: A Case Series. *Journal of Neuroscience Nursing*, 53(3), 145–148. <https://doi.org/10.1097/jnn.0000000000000584>
8. Emelifeonwu, J.A., Reid, K., Rhodes, J.K.J., Myles, L. (2018). Saved by the pupillometer – A role for pupillometry in the acute assessment of patients with traumatic brain injury. *Brain Injury*. DOI: 10.1080/02699052.2018.1429021
9. Fountas, K.N., Kapsalaki, E.Z., Machinis, T.G., Boev, A.N., Robinson, J.S., Troup, E.C.

(2006). Clinical implications of quantitative infrared pupillometry in neurosurgical patients. *Neurocritical Care*, 5(1), 55–60. doi: 10.1385/NCC:5:1:55

10. Godau, J., Bierwirth, C., Rösche, J., & Bösel, J. (2020, November 20). Quantitative Infrared Pupillometry in Nonconvulsive Status Epilepticus. *Neurocritical Care*, 35(1), 113–120. <https://doi.org/10.1007/s12028-020-01149-1>
11. Jahns, F-P, Miroz, J.P., Messerer, M., Daniel, R.T., Taccone, F.S., Eckert, P., Oddo, M. Quantitative pupillometry for the monitoring of intracranial hypertension in patients with severe traumatic brain injury. *Critical Care*. 2019;23(1):155. doi:10.1186/s13054-019-2436-3
12. Kerr, R.G., Bacon, A.M., Baker, L.L., Gehrke, J.S., Hahn, K.D., Lillegraven, C.L., Renner, C.H., Spilman, S.K. (2016). Underestimation of pupil size by critical care and neurosurgical nurses. *American Journal of Critical Care*, 25(3): 213-219. DOI: 10.4037/ajcc2016554
13. Kim, T.J., Ko, S-B. Implication of neurological pupil index for monitoring of brain edema. *Acute and Critical Care*. 2018 Feb;33(1): 57-60. doi.org/10.4266/acc.2017.00213
14. Kim, T. J., Park, S. H., Jeong, H. B., Ha, E. J., Cho, W. S., Kang, H. S., Kim, J. E., & Ko, S. B. (2020, February 24). Neurological Pupil Index as an Indicator of Neurological Worsening in Large Hemispheric Strokes. *Neurocritical Care*, 33(2), 575–581. <https://doi.org/10.1007/s12028-020-00936-0>
15. Lussier, B. L., Stutzman, S. E., Atem, F., Venkatachalam, A. M., Perera, A. C., Barnes, A., Aiyagari, V., & Olson, D. M. (2019, December). Distributions and Reference Ranges for Automated Pupillometer Values in Neurocritical Care Patients. *Journal of Neuroscience Nursing*, 51(6), 335–340. <https://doi.org/10.1097/jnn.0000000000000478>
16. Marmarou, A., Lu, J., Butcher, I., McHugh, G.S., Murray, G.D., Steyerberg, E.W., Muchkudiani, N.A., Choi, S., Mass, A.I. (2007). Prognostic value of the Glasgow Coma Scale and pupil reactivity in traumatic brain injury assessed pre-hospital and on enrollment: an IMPACT analysis. *Neurotrauma*, 24(2), 270-280.
17. McNett M, Moran C, Grimm D, Gianakis A. Pupillometry trends in the setting of increased intracranial pressure. *J Neuroscience Nursing*. 2018;50(6):357-361. doi:10.1097/JNN.0000000000000401
18. McNett, M., Moran, C., Janki, C., & Gianakis, A. (2017, August). Correlations Between Hourly Pupillometer Readings and Intracranial Pressure Values. *Journal of Neuroscience Nursing*, 49(4), 229–234. <https://doi.org/10.1097/jnn.0000000000000290>
19. Meeker, M., Du, R., Bacchetti, P., Privitera, C.M., Larson, M.D., Holland, M.C., Manley, G. (2005). Pupil examination: Validity and clinical utility of an automated Pupillometer. *Journal of Neuroscience Nursing*, 37(1), 34-40.
20. Miroz, J. P., Ben-Hamouda, N., Bernini, A., Romagnosi, F., Bongiovanni, F., Roumy, A., Kirsch, M., Liaudet, L., Eckert, P., & Oddo, M. (2020, May). Neurological Pupil index for Early Prognostication After Venoarterial Extracorporeal Membrane Oxygenation. *Chest*, 157(5), 1167–1174. <https://doi.org/10.1016/j.chest.2019.11.037>

21. NeurOptics. (2022). Pupillometry in critical care. <https://neuroptics.com/pupillometry-clinical-overview/>

22. NeurOptics NPi®-300 Pupillometer Quick Start Guide. 2021; Rev A (HOMA-BD5UFZ).

23. NeurOptics NPi®-300 Pupillometer Instructions For Use. 2021; Rev D (HOMA-BCLLVU).

24. Oddo, M., Sandroni, C., Citerio, G., Miroz, J. P., Horn, J., Rundgren, M., Cariou, A., Payen, J. F., Storm, C., Stammet, P., & Taccone, F. S. (2018, November 26). Quantitative versus standard pupillary light reflex for early prognostication in comatose cardiac arrest patients: an international prospective multicenter double-blinded study. *Intensive Care Medicine*, 44(12), 2102–2111. <https://doi.org/10.1007/s00134-018-5448-6>

25. Olson, D.M., Fishel, M. The use of automated pupillometry in critical care. *Critical Care Nursing Clinics North America*. 2016;28:101-107. doi: 10.1016/j.cnc.2015.09.003

26. Olson, D. M., Stutzman, S. E., Atem, F., Kincaide, J. D., Ho, T. T., Carlisle, B. A., & Aiyagari, V. (2017, August). Establishing Normative Data for Pupillometer Assessment in Neuroscience Intensive Care: The “END-PANIC” Registry. *Journal of Neuroscience Nursing*, 49(4), 251–254. <https://doi.org/10.1097/jnn.0000000000000296>

27. Olson, D.M., Stutzman, S., Saju, C., Wilson, M., Zhao, W., Aiyagari, V. Interrater Reliability of Pupillary Assessments. *Neurocritical Care*. 2016;24(2):251-257. doi:10.1007/s12028-015-0182-1

28. Ong, C., Hutch, M., Barra, M., Kim, A., Zafar, S., Smirnakis, S. Effects of osmotic therapy on pupil reactivity: Quantification using pupillometry in critically ill neurologic patients. *Neurocritical Care*. 2019;30(2):307-315. doi:10.1007/s12028-018-0620-y

29. Ortega-Perez, S., Shoyombo, I., Aiyagari, V., Atem, F., Hill, M., Stutzman, S. E., & Olson, D. M. (2019, June 7). Pupillary Light Reflex Variability as a Predictor of Clinical Outcomes in Subarachnoid Hemorrhage. *Journal of Neuroscience Nursing*, 51(4), 171–175. <https://doi.org/10.1097/jnn.0000000000000443>

30. Osman, M., Stutzman, S. E., Atem, F., Olson, D., Hicks, A. D., Ortega-Perez, S., Aoun, S. G., Salem, A., & Aiyagari, V. (2019, July). Correlation of Objective Pupillometry to Midline Shift in Acute Stroke Patients. *Journal of Stroke and Cerebrovascular Diseases*, 28(7), 1902–1910. <https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.03.055>

31. Papangelou, A., Zink, E.K., Chang, W-TW., Frattalone, A., Gergen, D., Gottschalk, A., Geocadin, R.G. Automated pupillometry and detection of clinical transtentorial brain herniation: A case series. *Military Medicine*. 2018;183(1-2):e113-e121. doi:10.1093/milmed/usx018

32. Prescott, B. R., Saglam, H., Duskin, J. A., Miller, M. I., Thakur, A. S., Gholap, E. A., Hutch, M. R., Smirnakis, S. M., Zafar, S. F., Dupuis, J., Benjamin, E. J., Greer, D. M., & Ong, C. J. (2021, September 22). Anisocoria and Poor Pupil Reactivity by Quantitative Pupillometry in Patients With Intracranial Pathology. *Critical Care Medicine*, 50(2), e143–e153. <https://doi.org/10.1097/ccm.0000000000005272>

33. Riker, R. R., Sawyer, M. E., Fischman, V. G., May, T., Lord, C., Eldridge, A., & Seder, D. B. (2019, May 8). Neurological Pupil Index and Pupillary Light Reflex by Pupillometry Predict Outcome Early After Cardiac Arrest. *Neurocritical Care*, 32(1), 152–161. <https://doi.org/10.1007/s12028-019-00717-4>
34. Rollins, M.D., Feiner, J.R., Lee, J.M., Shah, S., Larson, M. Pupillary effects of high-dose opioid quantified with infrared pupillometry. *Anesthesiology*. 2014;121(5): 1037-1044. doi:10.1097/ALN.0000000000000384
35. Romagnosi, F., Bernini, A., Bongiovanni, F., Iaquaniello, C., Miroz, J. P., Citerio, G., Taccone, F. S., & Oddo, M. (2022, May 6). Neurological Pupil Index for the Early Prediction of Outcome in Severe Acute Brain Injury Patients. *Brain Sciences*, 12(5), 609. <https://doi.org/10.3390/brainsci12050609>
36. Shoyombo, I., Aiyagari, V., Stutzman, S.E., Atem, F., Hill, M., Figueroa, S.A., Miller, C., Howard, & Olson, D. Understanding the relationship between the neurologic pupil index and constriction velocity values. *Scientific Reports*. 2018;8:6992. doi:10.1038/s41598-018-25477-7
37. Young, G.B. (2009). Neurologic prognosis after cardiac arrest. *New England Journal of Medicine*, 361, 605-611.

B. COMMUNICATION AND EDUCATION

1. This guideline will be communicated to the appropriate UMMC personnel via the following channels:
 - a. The guideline will be placed within PolicyStat on the intranet.
 - b. Re-education and revisions will be communicated via Medical Staff , Patient Care Service, and Nursing meetings and publications as needed.

References reviewed 6/14/24.

Approval Signatures

Step Description	Approver	Date
Clinical Practice Council	Scott Taylor: Clinical Practice & Development Coordinator	08/2024
Policy Oversight Committee	Baylee Chambers: Project Manager CCO Office	07/2024
Critical Care Ops	Karen McQuillan: Lead Clin Nurse Spec Stc	06/2024

Applicability

UMMC Downtown Campus

COPY