

Origination	05/2023	Owner	Karen McQuillan: Lead Clinical Nurse Specialist STC
Last Approved	06/2024		
Effective	06/2024		
Last Revised	05/2023	Area	Shock Trauma Center
Next Review	06/2027	Applicability	UMMC Downtown Campus
		Policy Types	Departmental Guideline

Guidelines for the Management of Patients with Acute Spinal Cord Injury

SPINAL CORD INJURIES

Neurosurgery versus Orthopedic Spine Coverage

- Cervical spinal cord injuries with deficit and cervical spine fractures without deficit with traumatic brain injury are managed by Neurosurgery
- Cervical spine injuries without deficit and injuries below the cervical region with or without deficit are managed by Ortho Spine

ASSESSMENT OF THE SPINE AND NEUROLOGIC FUNCTION

Functional Assessment

Refer to the Guidelines for the Use of the Spinal Cord Injury Flow Sheet on the STC website

<http://intra.umms.org/-/media/intranets/ummc/pdfs/departments/shocktrauma/policies-and-procedures/guidelines-and-clinical-protocols/spinal-cord-injury-flowsheet-usage-guidelines.pdf?la=en&upd=20180720172152&hash=144E579358ABB504966111B73E58335169B4A7E4>

Diagnostics

Refer to

- [Cervical Spine Algorithm - Outpatient](#)

- [Cervical Spine Algorithm - Reliable](#)
- [Cervical Spine Algorithm - Unreliable](#)

MANAGEMENT

Respiratory

- Use the jaw-thrust maneuver to establish an airway in the unconscious patient with a potential cervical spine injury.
- Manual in-line traction is applied to minimize neck motion during intubation.
- Monitor patient's for rate, depth, and pattern of breathing (use of accessory muscles or paradoxical breathing), strength and effectiveness of cough, and the ability to adequately oxygenate and ventilate.
- Continuous pulse oximetry and, when possible, end-tidal carbon dioxide should be monitored.
- Mucolytics (guaifenesin and nebulized acetylcysteine) may be prescribed to thin secretions decreasing the risk of mucous plugging and aid clearance.
- Inhaled bronchodilators may be used to reduce bronchoconstriction and hyperreactivity of airways.
 - Ipratropium should be limited to the acute phase because the anticholinergic effects may lead to decreased surfactant production and thickened secretions over time.
 - Beta-2 agonists (albuterol) appear to offset some of the effects of the unopposed parasympathetic stimulation - produce bronchodilation, increase heart rate, and may enhance surfactant production.
- Place an abdominal binder beneath the costal margin and over the iliac crests bilaterally to best position the diaphragm for optimal lung volumes, particularly when the patient is sitting upright. The lower portion of the binder should be tighter than the section running along the floating ribs.
- See the following Respiratory Therapy Guidelines
 - Secretion Clearance and Recruitment CSCI pathway (CSCI SCABDAP)
 - CSCI Optimizing Trach Collar Trials
 - CSCI Diaphragmatic Pacing Stimulation
 - CSCI Extubation Considerations
 - Patients with a weak cough and who have a natural airway or are intubated but stable enough to participate in pulmonary hygiene should use an assistive (quad) cough technique to assist with clearing secretions. The patient is instructed to take three breaths; on the expiratory phase of the third breath, the nurse places the heel of the hand halfway between the patient's umbilicus and xiphoid process and thrusts in and upward while the patient coughs.

Cardiovascular

- Maintain sufficient blood pressure
 - Avoid a systolic blood pressure below 90 mm Hg when possible and maintain a mean arterial pressure >85 mm Hg for the first 7 days after acute spinal cord injury.
 - Indications
 - In general, all ASIA A-C patients with SCI T6 or higher. Other injuries including ASIA D and those due to exacerbation of existing myelopathy would have to be discussed with the surgical and critical care teams.
 - Interventions
 - Ensure adequate intravascular volume
- Consider obtaining a Focused Rapid Echocardiographic Evaluation (FREE) or other form of echo to assess cardiac function, output, volume status and systemic vascular resistance

- If needed use vasoactive agents (e.g., norepinephrine) or inotropes (e.g., dobutamine, epinephrine). The Consortium for Spinal Cord Medicine recommends the use of agents offering both inotropic and chronotropic effects as well as vasoconstrictive properties for patients injured at the T6 and higher level (loss of cardiac sympathetic innervation). Care should be taken with pure alpha agonists such as phenylephrine as unopposed parasympathetic tone can lead to reflex bradycardia. Conversely use of pure beta agonists such as dobutamine can lead to increased vasoplegia and lower blood pressure.
- Some patients may not tolerate MAP augmentation, such as with severe cardiovascular disease, or develop dysrhythmias with norepinephrine, thus in the interest of patient safety the intervention may need to be reconsidered or discontinued.
- Place a central venous catheter if vasoactive agents are needed and an arterial line to monitor the blood pressure.
- Administer oral or enteral alpha-1 receptor agonists, such as midodrine or alpha- and beta-agonists like pseudoephedrine, to augment blood pressure and in the subacute phase, prevent orthostatic hypotension. ^{32,117-119}
- Avoid and treat symptomatic bradycardia
 - Monitor patient's cardiac rhythm and rate continuously.
 - Avoid rapid position changes and hypoxia (e.g., hyperoxygenate the patient prior to passage of the suction catheter) which can trigger bradycardia
 - Administer atropine per the prn order to treat symptomatic bradycardia
 - Consider oral/enteral beta agonist medications, such as albuterol, or alpha- and beta-agonists such as pseudoephedrine for temporary heart rate support. ^{32,122,123}
 - Generally, even the most serious cases of bradycardia resolve within 6 weeks of injury, and permanent cardiac pacing is rarely required.
- Deep venous thrombosis prevention – Refer to the section on spinal cord injury in the Venous Thromboembolism (VTE) Prophylaxis and Treatment Guidelines on the STC website (<http://intra.umms.org/-/media/intranets/ummc/pdfs/departments/shocktrauma/policies-and-procedures/vte-guidelines-518.pdf?upd=20180719142456&la=en&hash=B1C60987ADB5387083433B05F43A56DEAF2B6EB5>)
- Autonomic Dysreflexia or Autonomic Hyperreflexia - Autonomic dysreflexia is a life-threatening condition triggered by somatic or visceral stimuli below the level of the injury, classically bladder or rectal distension. If left untreated, malignant hypertension can result in intracranial hemorrhage, retinal detachment, seizures, coma, myocardial infarction, pulmonary edema, and death. Although prevention is ideal, once autonomic dysreflexia occurs, first-line therapy is to remove the stimuli. If hypertension persists, pharmacologic intervention should be instituted with calcium channel blockade or nitrates.

Temperature Regulation

- Monitor patient's core body temperature continuously.
- If hypothermic gradual warming with a hyperthermia blanket and warmed intravenous fluids can be used to restore core body temperature. Prevent overwarming.

Genitourinary

- In patients with injury above the sacral level place an indwelling bladder catheter and then follow the Spinal Cord Injury Bladder Catheter Removal protocol found on the STC website. See Attachment

Gastrointestinal

- Patients should receive routine peptic ulcer disease prophylaxis with histamine-2 receptor antagonists (preferred) or proton pump inhibitors (only if taking prior to admission or history of gastrointestinal bleed)
- Every effort should be made to meet the nutritional requirements of the patient within 72 hours is important to maintain GI integrity and provide nutritional support.¹³⁵ Placement of a transpyloric tube is recommended to facilitate enteral feeding if gastric intolerance occurs. Indirect calorimetry measures energy expenditure and guides nutritional support which may assist clinicians in setting appropriate goals.¹³⁵⁻¹³⁸ Nutritional Services will assist with the decision to obtain and timing of indirect calorimetry.
- Before initiating oral feedings for a patient with a cervical SCI, a swallowing evaluation is often recommended especially for patients who underwent anterior approach surgeries. Patients who underwent anterior approach surgeries may be at higher risk of dysphagia.
- Unlike other critical illnesses, SCI does not manifest a hypermetabolic response, however, it does appear to produce an obligatory negative nitrogen balance most likely attributed to muscle atrophy.¹³⁶⁻¹³⁸ To reduce the negative nitrogen balance Oxandrolone may be prescribed. <http://intra.umms.org/-/media/intranets/ummc/pdfs/departments/shocktrauma/policies-and-procedures/guidelines-and-clinical-protocols/oxandrolone-guideline-18.pdf?upd=20181029183855&la=en&hash=B8804C26DC7FF861689E79CA03C143997AF73874>
- Constipation can occur as a result of reduced GI motility, opioid and sedative use, and immobility. Stool softeners (docusate sodium), dulcolax suppository, laxatives (sennosides or bisacodyl) or low volume enemas may be used to evacuate the stool. Sufficient fiber, bulk forming agents and fluid intake help to ensure stool is the desired consistency. Goal for stool consistency is to have:
- UMN lesion (Above the sacral level) goal: soft-formed stool readily evacuated with rectal stimulation
- LMN lesion (At the sacral level) goal: firm-formed stool retained between bowel care episodes and is easy to evacuate

Integument

- Remove patient from the hard backboard within two hours when possible
- If a cervical collar is likely needed for over 24 hours change the extrication collar to a well padded (Miami J) collar.
- Ensure good brace fit and provide care beneath immobilization devices or splints each shift.
- Patients with spinal cord functional deficit should be moved out of bed to a high back wheel chair with a pressure relieving cushion. Before getting the patient out of bed apply thigh high compression stockings and ace wraps to the lower extremities, as well as an abdominal binder placed below the costal margin.
- Weight shift the patient while out of bed every 20 minutes

Pain, Anxiety and/or Depression

- Provide frequent verbal and physical contact with the patient to provide information and offer reassurance can reduce feelings of anxiety, fear, and helplessness.
- Use of sedation and analgesia cautiously in the patient breathing spontaneously to prevent impairment of the sensorimotor examination, reduction of blood pressure, and depression of respiratory drive.
- Preferably use of short-acting, reversible medications in the emergent phase of care.
- Treat nociceptive pain and neuropathic pain
- When appropriate provide a muscle relaxant
- Treat anxiety (e.g., Valium)

- Consider consulting Integrative Care
- Offer patient and family support including Social Work, Pastoral Care and Trauma Survivor's Network
- When concerns about depression or other psychiatric disorders occur, consider placing a psychiatric consult.

Sleep Promotion

- Minimize noise
- Encourage minimal interruptions overnight
- Keep lights on during the day

SPINAL COLUMN ALIGNMENT AND STABILIZATION

A plan for spinal realignment, decompression, and stabilization is established as soon as possible once the diagnostic evaluation of the spinal column and cord is complete. Surgical or nonsurgical interventions may be required.

Incomplete or unstable injuries are usually taken emergently to the OR versus complete and/or stable injuries that may be taken to the OR in an urgent but nonemergent manner.

Table 1. Pharmacotherapy for Acute Spinal Cord Injury

Drug	Dosing	Comments
Hemodynamic Management		
Norepinephrine	0.01-1 mcg/kg/min	Preferred initial vasopressor for MAP augmentation due to stimulation of both alpha and beta receptors
Dobutamine	1-5 mcg/kg/min	May be considered if inotropy desired in low cardiac output states
Epinephrine	1. 0.05 mcg/kg/min	May be considered if inotropy desired in low cardiac output states not responsive to dobutamine or when dobutamine worsens hypotension
Albuterol	Initial dosing: 2 mg po q6h (up to 6 mg po q6h)	Used for bradycardia
Midodrine	Initial dosing: 10 mg po q6h (up to 20 mg po q6h)	Used to augment BP
Pseudoephedrine	Initial dosing: 30 mg po q6h or 8h	May consider adding to midodrine for refractory hypotension or instead of albuterol for bradycardia; avoid scheduling doses later in the day, if possible as may affect sleep
Pain Management		
Acetaminophen	650-1000 mg po q6-8h	Use lower doses in patients with pre-existing hepatic insufficiency and/or elderly patients
Baclofen	Initial dosing: 5 mg po q6-8h (up to 20 mg po 6h)	For management of muscle spasms
Pregabalin	Initial dosing:	For management of neuropathic pain in

	50 mg po q8-12h (max 600 mg/day) In patients ≥ 65 years may consider lower starting dose of 25 mg po q12h	incomplete SCI
Sleep Promotion		
Melatonin	5-10 mg po qhs	May use as initial agent or in combination with trazodone
Trazodone	Initial dosing: 50 mg po qhs (max 200 mg)	Consider lower starting dose in elderly patients

REFERENCES (NEED to edit)

1. Muijs S, Oner FC: Management of Cervical Injuries. In Jallo J and Vaccaro AR (eds) *Neurotrauma and Critical Care of the Spine (2nd edition)*. New York, Thieme, 2018 (Kindle Edition).
2. Stein, DM, Sheth KN: Management of acute spinal cord injury. *Continuum*, 21(1):159-187, 2015.
3. Aarabi B, Hadley MN, Dhall SS, et al: Management of acute traumatic Central Cord Syndrome (ATCCS). *Neurosurgery* 72:195-204, 2013.
4. Heary RF, Zouzias AD, Campagnolo DI: Acute medical and surgical management of spinal cord injury. In Campagnolo, DI and Kirshblum S, editors: *Spinal Cord Medicine (2nd edition)*. Philadelphia: Wolters Kluwer/Lippincott, Williams, and Wilkins, 2011 (Kindle edition).
5. Consortium for Spinal Cord Medicine: *Early Acute Management in Adults with Spinal Cord Injury: a Clinical Practice Guideline for Healthcare Professionals*, Washington, D.C., 2008, Paralyzed Veterans of America.
6. Shank CD, Walters BC, Hadley MN: Management of acute traumatic spinal cord injuries. In Wijdicks EFM and Kramer AH, editors: *Handbook of Clinical Neurology Vol. 140 (3rd series) Critical Care Neurology*, Part I. Cambridge, MA: Elsevier BV. pp. 275-298, 2017.
7. Hadley MN, Walters BC, Aarabi B, et al: Clinical assessment following acute cervical spinal cord injury. *Neurosurgery* 72:40-53, 2013.
8. Furlan JC, Noonan V, Singh A, Fehlings MG: Assessment of disability in patients with acute traumatic spinal cord injury: a systematic review of the literature. *J Neurotrauma* 28:1413-1430, 2011.
9. Krassioukov A, Biering-Sørensen F, Donovan W, et al: International standards to document remaining autonomic function after spinal cord injury. *J Spinal Cord Med.* Jul;35(4):201-10, 2012.
10. Ryken TC, Hadley MN, Walters BC, et al: Radiographic assessment. *Neurosurgery* 72:54-72, 2013.
11. Como JJ, Diaz JJ, Dunham CM, et al: Practice management guidelines for Identification of cervical spine injuries following trauma: update from the Eastern Association for the Surgery of Trauma Practice Management Guidelines Committee. *J Trauma*, 67(3):651-659, 2009.
12. Shah LM, Ross JS: Imaging of spine trauma. *Neurosurgery* 79:626-642, 2016.
13. Cothren CC; Moore EE; Biffl WL, et al: Cervical spine fracture patterns predictive of blunt vertebral artery injury. *J Trauma*. Nov;55(5):811-3, 2003.
14. Harrigan MR, Hadley MN, Dhall SS, et al: Management of vertebral artery injuries following non-penetrating cervical trauma. *Neurosurgery* 72:234-243, 2013.
15. Bromberg WJ, Collier BC, Diebel LN, et al: Blunt Cerebrovascular Injury Practice Management Guidelines: The Eastern Association for the Surgery of Trauma. *J Trauma* 68(2):471-477, 2010.
16. Biffl WL, MD, Cothren CC, MD, Moore EE, et al: Western Trauma Association Critical Decisions in Trauma: Screening for and Treatment of Blunt Cerebrovascular Injuries. *J Trauma* 67(6):1150-1153, 2009.
17. deSouza RM, Crocker MJ, Haliasos N, et al: Blunt traumatic vertebral artery injury: a clinical review. *Eur Spine J* 20:1405-1416, 2011.

18. Park JH, Hyun SJ: Intraoperative neurophysiological monitoring in spinal surgery. *World J Clin Cases* September 16; 3(9): 765-773, 2015.
19. Cofano F, Zenga F, Mammi M, et al: Intraoperative neurophysiological monitoring during spinal surgery: technical review in open and minimally invasive approaches. *Neurosurg Rev*. Jan 8, 1-11, 2018.
20. Costa P, Faccani G, Montalenti E, et al: Neurophysiological assessment of the injured spinal cord: an intraoperative approach. *Spinal Cord* 52:749-757, 2014.
21. AANS/CNS Joint Section on Disorders of the Spine and Peripheral Nerves Updated Position Statement: Intraoperative Electrophysiological Monitoring, January 2018. Available at: <http://www.spinesection.org/files/monitoring.pdf>
22. Diedrich DA, Rose PS, Brown DR: Airway management in cervical spine injury. *Curr Anesthesiol Rep* 3:197–204, 2013.
23. Arora S, Flower O, Murray MPS, Lee BB: Respiratory care of patients with cervical spinal cord injury: a review. *Crit Care Resusc*. Mar;14(1):64-73, 2012.
24. Ryken TC, Hurlbert RJ, Hadley MN, et al: The acute cardiopulmonary management of patients with cervical spinal cord injuries. *Neurosurgery* 72:84–92, 2013.
25. Shah A, Shem K, McKenna S, Berlly M: Respiratory management of the spinal cord-injured patient. In Campagnolo, DI and Kirshblum S, editors: *Spinal Cord Medicine (2nd edition)*. Philadelphia: Wolters Kluwer/Lippincott, Williams, and Wilkins, 2011 (Kindle Edition).
26. Galeiras Vázquez R, Rascado Sedes P, Mourelo Fariña M, et al: Respiratory management in the patient with spinal cord injury. *Biomed Res Int*. 2013:168757, 2013. Available at: <https://www.hindawi.com/journals/bmri/2013/168757/>
27. Como JJ, Sutton ER, McCunn M, et al: Characterizing the need for mechanical ventilation following cervical spinal cord injury with neurologic deficit. *J Trauma*. Oct;59(4):912-6, 2005.
28. Garstang SV, Walker H: Cardiovascular and autonomic dysfunctions after spinal cord injury. In Campagnolo, DI and Kirshblum S, editors: *Spinal Cord Medicine (2nd edition)*. Philadelphia: Wolters Kluwer/Lippincott, Williams, and Wilkins, 2011 (Kindle Edition).
29. Grigorean VT, Sandu AM, Popescu M, et al: Cardiac dysfunctions following spinal cord injury. *J Med Life* 2(2):133-145, 2009.
30. Ditunno JF, Little JW, Burns AS: Spinal shock revisited: a four-phase model, *Spinal Cord* 42:383-395, 2004.
31. Ploumis A, Yadlapalli N, Fehlings MG, et al: A systematic review of the evidence supporting a role for vasopressor support in acute SCI. *Spinal Cord* 48:356-362, 2010.
32. Hagen EM, Rekand T, Grenning M, Faerstrand: Cardiovascular complication of spinal cord injury. *Tidsskr Nor Legeforen*, 9(132):1115-1120, 2012.
33. Lo E, Nicolle LE, Coffin SE, et al: Strategies to prevent Catheter-Associated Urinary Tract Infections in acute care hospitals: 2014 update. *Infect Control Hosp Epidemiol*. May;35(5):464-79, 2014. Available at: <http://www.jstor.org/stable/10.1086/675718>
34. Yilmaz T, Kaptanoglu E: Current and future medical therapeutic strategies for the functional repair of spinal cord injury. *World J Orthop* 6(1):42-55, 2015.
35. Dietrich WD: Protection and Repair After Spinal Cord Injury: Accomplishments and Future Directions. *Top Spinal Cord Inj Rehabil*. Spring;21(2):174-87, 2015.
36. Schmidt R, Ghobrial GM, Harrop JS: Emerging Therapies for Spinal Cord Injury. In Jallo J and Vaccaro AR (eds) *Neurotrauma and Critical Care of the Spine (2nd edition)*. New York, Thieme, 2018 (Kindle Edition)
37. Hurlbert JR, Hadley MN, Walters BC, et al: Pharmacological therapy for acute spinal cord injury. *Neurosurgery* 72:93–105, 2013.
38. Fehlings MG, Wilson JR, Tetreault LA, et al: A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the use of methylprednisolone sodium succinate.

Global Spine J. 7(3):203S-211S, 2017.

39. Martirosyan NL, Patel AA, Carotenuto A, et al: The role of therapeutic hypothermia in the management of acute spinal cord injury. *Clin Neurol Neurosurg*. Mar;154:79-88, 2017.
40. Dietrich WD, Levi AD, Wang M, Green BA. Hypothermic treatment for acute spinal cord injury. *Neurotherapeutics*. Apr;8(2):229-39, 2011.
41. Levi AD, Casella G, Green BA, et al: Clinical outcomes using modest intravascular hypothermia after acute cervical spinal cord injury. *Neurosurgery*. Apr;66(4):670-7, 2010.
42. Dididze M, Green BA, Dietrich WD, et al: Systemic hypothermia in acute cervical spinal cord injury: a case-controlled study. *Spinal Cord* May;51(5):395-400, 2013.
43. Gelb DE, Hadley MN, Aarabi B, MD, et al: Initial Closed Reduction of Cervical Spinal Fracture-Dislocation Injuries. *Neurosurgery* 72:73-83, 2013.
44. Lee AS, MacLean JC, Newton DA: Rapid traction for reduction of cervical spine dislocations. *J Bone Joint Surg Br*. May;76(3):352-6., 1994
45. Fehlings MG, Vaccaro A, Wilson JR, et al: Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). *PLoS One*. 2012;7(2):e32037. Retrieved from: <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032037>
46. Wilson JR, Tetreault LA, Kwon BK, et al: Timing of decompression in patients with acute spinal cord injury: a systematic review. *Global Spine J.* Sep;7(3 Suppl):95S-115S, 2017.
47. Liu JM, Long XH, Zhou Y, e al: Is Urgent Decompression Superior to Delayed Surgery for Traumatic Spinal Cord Injury? A Meta-Analysis. *World Neurosurg*. Mar;87:124-31, 2016.
48. Berlowitz DJ, Wadsworth B, Ross J: Respiratory problems and management in people with spinal cord injury. *Breathe* 12(4):328-340, 2016.
49. Schilero GJ, Spungen AM, Bauman WA, et al: Pulmonary function and spinal cord injury. *Respir Physiol Neurobiol*. May 15;166(3):129-41, 2009.
50. Brown R, DiMarco AF, Hoit JD, Garshick E: Respiratory dysfunction and management in spinal cord injury. *Respir Care*. Aug;51(8):853-68, 2006.
51. Wong SL, Shem K, Crew J: Specialized respiratory management for acute cervical spinal cord injury: a retrospective analysis. *Top Spinal Cord Inj Rehabil*. 18(4):283-290, 2012.
52. Consortium for Spinal Cord Medicine: Respiratory Management Following Spinal Cord Injury: a Clinical Practice Guideline for Healthcare Professionals, Washington, D.C., 2005, Paralyzed Veterans of America.
53. Bach JR: Noninvasive respiratory management of high level spinal cord injury. *J Spinal Cord Med*. 35(2):72-80, 2012.
54. Hess DR: Airway clearance: physiology, pharmacology, techniques, and practice. *Respir Care* Oct;10(52):1392-196, 2007.
55. Homnick DN: Mechanical insufflation-exsufflation for airway mucus clearance. *Respir Care* 52(10):1296-1305, 2007.
56. Zakrasek EC, Nielson JL, Kosarchuk JJ, et al: Pulmonary outcomes following specialized respiratory management for acute cervical spinal cord injury: a retrospective analysis. *Spinal Cord*. Jun;55(6):559-565, 2017.
57. Bascom AT, Lattin CD, Aboussouan LS et al: Effect of acute aminophylline administration on diaphragm function in high cervical tetraplegia: a case report, *Chest* 127:658-661, 2005.
58. Babu R, Owens TR, Thomas S, et al: Timing of tracheostomy after anterior cervical spine fixation. *J Trauma Acute Care Surg*. Apr;74(4):961-6, 2013.
59. Menaker J1, Kufra JA, Glaser J, et al: Admission ASIA motor score predicting the need for tracheostomy after cervical spinal cord injury. *J Trauma Acute Care Surg*. Oct;75(4):629-34, 2013.

60. Childs BR, Moore TA, Como JJ, Vallier HA. American Spinal Injury Association Impairment Scale Predicts the Need for Tracheostomy After Cervical Spinal Cord Injury. *Spine*. Sep 15;40(18):1407-13, 2015.
61. Jubran A, Grant BJ, Duffner LA, et al: Effect of pressure support vs unassisted breathing through a tracheostomy collar on weaning duration in patients requiring prolonged mechanical ventilation: a randomized trial. *JAMA*. Feb 20;309(7):671-7, 2013.
62. Poslusny JA Jr, Onders R, Kerwin AJ, et al: Multicenter review of diaphragm pacing in spinal cord injury: successful not only in weaning from ventilators but also in bridging to independent respiration. *J Trauma Acute Care Surg*. Feb;76(2):303-9, 2014.
63. Dalal K, DiMarco AF: Diaphragmatic pacing in spinal cord injury. *Phys Med Rehabil Clin N Am*. Aug;25(3):619-29, 2014.
64. Wood GC, Boucher AB, Johnson JL, et al: Effectiveness of pseudoephedrine as adjunctive therapy for neurogenic shock after acute spinal cord injury: a case series. *Pharmacotherapy*. Jan;34(1):89-93, 2014.
65. Low PA, Gilden JL, Freeman R, et al: Efficacy of midodrine vs placebo in neurogenic orthostatic hypotension. A randomized, double-blind multicenter study. Midodrine Study Group. *JAMA*. Apr 2;277(13):1046-51., 1997.
66. Poveromo LB, Michalets EL, Sutherland SE: Midodrine for the weaning of vasopressor infusions. *J Clin Pharm Ther*. Jun;41(3):260-5, 2016.
67. Partida E, Mironets E, Hou S, Tom VJ: Cardiovascular dysfunction following spinal cord injury. *Neural Regen Res* Feb;11(2):189-194, 2016.
68. Bartholdy K, Biering-Sørensen T, Malmqvist L, et al: Cardiac arrhythmias the first month after acute traumatic spinal cord injury. *J Spinal Cord Med*. 37(2):162-170.
69. Evans CH, Duby JJ, Berry AJ, Schermer CR, Cocanour CS: Enteral albuterol decreases the need for chronotropic agents in patients with cervical spinal cord injury-induced bradycardia. *J Trauma Acute Care Surg*. Feb;76(2):297-301, 2014.
70. Rollstin A, Carey MC, Doherty G, Tawil I, Marinaro J: Oral albuterol to treat symptomatic bradycardia in acute spinal cord injury. *Intern Emerg Med*. Feb;11(1):101-5, 2016.
71. Frisbie JH: Salt wasting, hypotension, polydipsia, and hyponatremia and the level of spinal cord injury. *Spinal Cord*. 45:563-568, 2007.
72. Furlan JC, Fehlings MG: Hyponatremia in the acute stage after traumatic cervical spinal cord injury: clinical and neuroanatomic evidence for autonomic dysfunction. *Spine*. 34(5):501-511, 2009.
73. J Kriz J, Shuck O, Horackova M: Hyponatremia in spinal cord injury patients: new insight into differentiating between the dilution and depletion forms. *Spinal Cord* 53:291–296, 2015.
74. Miranda AR, Hassouna HI. Mechanisms of thrombosis in spinal cord injury. *Hematol Oncol Clin North Am*. Apr;14(2):401-16, 2000.
75. Consortium for Spinal Cord Medicine: *Prevention of Venous Thromboembolism in Individuals with Spinal Cord Injury: Clinical Practice Guideline for Healthcare Providers (3rd Edition)* Washington, DC, Paralyzed Veterans of America, 2016
76. Dhall SS, Hadley MN, Aarabi B, et al: Deep Venous Thrombosis and Thromboembolism in Patients With Cervical Spinal Cord Injuries. *Neurosurgery* 72:244–254, 2013.
77. Cox JB, Weaver KJ, Neal DW, et al: Decreased incidence of venous thromboembolism after spine surgery with early multimodal prophylaxis. *J Neurosurg Spine* 21:677–684, 2014.
78. Dhillon ES, Khanna R, Cloney M, et al: Timing and risks of chemoprophylaxis after spinal surgery: a single-center experience with 6869 consecutive patients. *J Neurosurg Spine*. Dec;27(5):681-693, 2017.
79. DiGiorgio AM, Tsolinas R, Alazze M, et al: Safety and effectiveness of early chemical deep venous thrombosis prophylaxis after spinal cord injury: pilot prospective data. *Neurosurg Focus*. Nov;43(5):E21, 2017.

80. Chen D, Anschel AS: Gastrointestinal disorders. In Campagnolo, DI and Kirshblum S, editors: *Spinal Cord Medicine (2nd edition)*. Philadelphia: Wolters Kluwer/Lippincott, Williams, and Wilkins, 2011.
81. Ebert E: Gastrointestinal involvement in spinal cord injury: a clinical perspective. *J Gastrointestin Liver Dis.* 2(1):75-82, 2012.
82. Dhall SS, Hadley MN, Aarabi B, et al: Nutritional support after spinal cord injury. *Neurosurgery.* Mar;72 Suppl 2:255-9, 2013.
83. Thibault-Halman G, Casha S, Singer S, Christie S: Acute management of nutritional demands after spinal cord injury. *J Neurotrauma.* 28(8):1497-1507, 2011.
84. Rodriguez DJ, Benzel EC, Clevenger FW: The metabolic response to spinal cord injury. *Spinal Cord.* Sep;35(9):599-604, 1997.
85. Holmes GM: Upper gastrointestinal dysmotility after spinal cord injury: is diminished vagal sensory processing one culprit? *Front Physiol.* Jul 17;3:277, 2012.
86. Gater DR, Pai AB: Metabolic disorders. In Campagnolo, DI and Kirshblum S, editors: *Spinal Cord Medicine (2nd edition)*. Philadelphia: Wolters Kluwer/Lippincott, Williams, and Wilkins, 2011.
87. Anderson KK, Arnold PM: Oropharyngeal Dysphagia after Anterior Cervical Spine Surgery: A Review. *Global Spine J.* 3:273-286, 2013.
88. Ihlainen T, Rinta-Kiikka I, Luoto TM, et al: Risk factors for laryngeal penetration-aspiration in patients with acute traumatic cervical spinal cord injury. *Spine J.* 18:81-87, 2018.
89. Shem K, Castillo K, Wong SL et al: Dysphagia and respiratory care in individuals with tetraplegia: incidence, associated factors, and preventable complications. *Top Spinal Cord Inj Rehabil* 18(1):15-22, 2012.
90. Frost F, Najarian CF: Spinal Orthosis. In Campagnolo, DI and Kirshblum S, editors: *Spinal Cord Medicine (2nd edition)*. Philadelphia: Wolters Kluwer/Lippincott, Williams, and Wilkins, 2011.
91. Fichtenbaum J, Kirshblum S: Psychological impact of spinal cord injury. In Campagnolo, DI and Kirshblum S, editors: *Spinal Cord Medicine (2nd edition)*. Philadelphia: Wolters Kluwer/Lippincott, Williams, and Wilkins, 2011.
92. Tate JA, Devito Dabbs A, Leslie Hoffman L, et al: Anxiety and agitation in mechanically ventilated patients. *Qual Health Res.* February ; 22(2): 157-17, 2012.
93. Pisani MA, Friese RS, Gehlbach BK, et al: Sleep in the intensive care unit. *Am J Respir Crit Care Med.* Apr 1;191(7):731-8, 2015.
94. Scheer FA, Zeitzer JM, Ayas NT, et al: Reduced sleep efficiency in cervical spinal cord injury; association with abolished night time melatonin secretion. *Spinal Cord.* Feb;44(2):78-81, 2006.
95. Anderson K, Aito S, Atkins M, et al: Functional recovery measures for spinal cord injury: an evidence-based review for clinical practice and research. *J Spinal Cord Med.* 31(2):133-44, 2008.
96. Furlan JC, Noonan V, Singh A, Fehlings MG: Assessment of disability in patients with acute traumatic spinal cord injury: a systematic review of the literature. *J Neurotrauma.* Aug;28(8):1413-30, 2011.
97. Ditunno JF: Outcome measures: evolution in clinical trials of neurological/functional recovery in spinal cord injury. *Spinal Cord.* Sep;48(9):674-84, 2010.
98. Fekete C, Eriks-Hoogland I, Baumberger M, et al: Development and validation of a self-report version of the Spinal Cord Independence Measure (SCIM III). *Spinal Cord.* Jan;51(1):40-7, 2013.
99. Van Silhout L, Peters AEJ, Berlowitz DJ, et al: Long-term change in respiratory function following spinal cord injury. *Spinal Cord* 54:714-719, 2016.
100. Sezer N, Akkus S, Ugurlu F: Chronic complication of spinal cord injury. *World J Orthop* January 18; 6(1):24-33, 2015.
101. Bauman WA, Korsten MA, Radulovic M, et al: 31st G. Heiner Sell Lectureship: Secondary Medical

Consequences of Spinal Cord Injury. *Top Spinal Cord Inj Rehabil* 18(4):354-378, 2012.

- 102. Berlowitz DJ, Brown DJ, Campbell DA, Pierce RJ: A longitudinal evaluation of sleep and breathing in the first year after cervical spinal cord injury. *Arch Phys Med Rehabil*. 86:1193-9, 2005.
- 103. Sankari A, Bascom AT, Chowdhuri S, et al: Tetraplegia is a risk factor for central sleep apnea. *J Appl Physiol* 116: 345-353, 2014.
- 104. Fuller DD, Lee K-Z, Tester NJ: The impact of spinal cord injury on breathing during sleep. *Respir Physiol Neurobiol*. September 15; 188(3): 344-354, 2013.
- 105. Chiodo AE, Sitrin RG, Bauman KA: Sleep disordered breathing in spinal cord injury: A systematic review. *J Spinal Cord Med*. Jul;39(4):374-82, 2016.
- 106. Lee ES, Joo MC: Prevalence of autonomic dysreflexia in patients with spinal cord injury above T6. *Biomed Res Int*. 2017:2027594, 2017.
- 107. Squair JW, Phillips AA, Harmon M, Krassioukov AV: Emergency management of autonomic dysreflexia with neurologic complications. *CMAJ*. Oct 18;188(15):1100-1103, 2016.
- 108. Phillips AA, Krassioukov AV: Contemporary cardiovascular concerns after spinal cord injury: mechanisms, maladaptations, and management. *J Neurotrauma*. 32:1927-1942, 2015.
- 109. Wan D, Krassioukov AV: Life-threatening outcomes associated with autonomic dysreflexia: a clinical review. *J Spinal Cord Med*. 37(1):2-10, 2014.
- 110. Hagen EM, Rekand T, Grønning M, Færstrand S: Cardiovascular complications of spinal cord injury. *Tidsskr Nor Laegeforen*. May 15;132(9):1115-20, 2012.
- 111. West CR, Squair JW, McCracken L, et al: Cardiac consequences of autonomic dysreflexia in spinal cord injury. *Hypertension* 68:1281-1289, 2016.
- 112. Consortium for Spinal Cord Medicine: *Acute Management of Autonomic Dysreflexia: Adults with Spinal Cord Injury Presenting to Health Care Facilities*, ed 2, Washington, DC, 2001, Paralyzed Veterans of America.
- 113. Krassioukov A, Eng JJ, Warburton D, et al: A systematic review of the management of orthostatic hypotension following spinal cord injury. *Arch Phys Med Rehabil*. 90(5):876-885, 2009.
- 114. Keating GM: Droxidopa: a review of its use in symptomatic neurogenic orthostatic hypotension. *Drugs*. Feb;75(2):197-206, 2015.
- 115. Wecht JM, Rosado-Rivera D, Weir JP, et al: Hemodynamic effects of L-threo-3,4-dihydroxyphenylserine (Droxidopa) in hypotensive individuals with spinal cord injury. *Arch Phys Med Rehabil*. Oct;94(10):2006-12, 2013.
- 116. Simpson LA, Eng JJ, Hsieh JT, Wolfe DL, et al: The health and life priorities of individuals with spinal cord injury: a systematic review. *J Neurotrauma*. May 20;29(8):1548-55, 2012.
- 117. Lo C, Tran Y, Anderson K, Craig A, Middleton J: Functional priorities in persons with spinal cord injury: using discrete choice experiments to determine preferences. *J Neurotrauma*. Nov 1;33(21):1958-1968, 2016.
- 118. Stiens SA, Bergman SB, Goetz LL: Neurogenic bowel dysfunction after spinal cord injury: clinical evaluation and rehabilitative management. *Arch Phys Med Rehabil*. 78(3):S86-S102, 1997.
- 119. Consortium for Spinal Cord Medicine: *Neurogenic Bowel Management in Adults with Spinal Cord Injury*, Washington, DC, 1998, Paralyzed Veterans of America.
- 120. Krassioukov A, Eng JJ, Claxton G, et al: Neurogenic bowel management after spinal cord injury: a systematic review of the evidence. *Spinal Cord* October; 48(10): 718-733, 2010.
- 121. Ozisler Z, Koklu K, Ozel S, Unsal-Delialioglu S: Outcomes of bowel program in spinal cord injury patients with neurogenic bowel dysfunction. *Neural Regen Res*. Jul;10(7):1153-8, 2015.
- 122. Vallès M, Vidal J, Clavé P, Mearin F: Bowel dysfunction in patients with motor complete spinal cord injury: clinical, neurological, and pathophysiological associations. *Am J Gastroenterol*. Oct;101(10):2290-9,

2006.

123. Paris G, Gourcerol G, Leroi AM: Management of neurogenic bowel dysfunction. *Eur J Phys Rehabil Med* 47:661-75, 2011.
124. Multidisciplinary Association of Spinal Cord Injury Professionals *Guidelines for Management of Neurogenic Bowel Dysfunction in Individuals with Central Neurological Conditions*, United Kingdom, September, 2012. Available at: <http://www.inmo.ie/tempDocs/CV653N%20Neuro%20Bowel%20Dysfunc%20Guide%2030%2010%2012%20pdf.pdf>
125. Pellicane AJ, Millis SR, Zimmerman SE, Roth EJ: Calorie and protein intake in acute rehabilitation inpatients with traumatic spinal cord injury versus other diagnoses. *Top Spinal Cord Inj Rehabil.* Summer;19(3):229-35, 2013.
126. Linsenmeyer T: Neurogenic bladder following spinal cord injury. In Campagnolo, DI and Kirshblum S, editors: *Spinal Cord Medicine (2nd edition)*. Philadelphia: Wolters Kluwer/Lippincott, Williams, and Wilkins, 2011.
127. Wyndaele JJ: The management of neurogenic lower urinary tract dysfunction after spinal cord injury. *Nat Rev Urol.* Dec;13(12):705-714, 2016.
128. Schurch B, Tawadros C, Carda S: Dysfunction of lower urinary tract in patients with spinal cord injury. *Handb Clin Neurol.* 130:247-67, 2015.
129. Adriaansen JJ, van Asbeck FW, Tepper M, et al: Bladder-emptying methods, neurogenic lower urinary tract dysfunction and impact on quality of life in people with long-term spinal cord injury. *J Spinal Cord Med.* Jan;40(1):43-53, 2017.
130. Al Taweel W, Seyam R: Neurogenic bladder in spinal cord injury patients. *Res Rep Urol.* 7: 85–99, 2015.
131. Consortium for Spinal Cord Medicine: *Bladder Management Following Spinal Cord Injury: What You Should Know*, Washington, DC, 2010, Paralyzed Veterans of America.
132. Krebs J, Wöllner J, Pannek J: Urethral strictures in men with neurogenic lower urinary tract dysfunction using intermittent catheterization for bladder evacuation. *Spinal Cord* 53(4): 310–313, 2015.
133. Hunter KF, Bharmal A, Moore KN: Long-term bladder drainage: Suprapubic catheter versus other methods: a scoping review. *Neurourol Urodyn.* Sep;32(7):944-51, 2013.
134. English SF: Update on voiding dysfunction managed with suprapubic catheterization. *Transl Androl Urol.* 6(Suppl 2): S180–S185, 2017.
135. Stoffel JT: Detrusor sphincter dyssynergia: a review of physiology, diagnosis, and treatment strategies. *Transl Androl Urol* 5(1):127-135, 2016.
136. Schurch B, Tawadros C, Carda S: Dysfunction of lower urinary tract in patients with spinal cord injury. *Handb Clin Neurol.* 2015;130:247-67,2015.
137. Kirshblum S, O'Connor K, Rader CQ: Pressure ulcers and spinal cord injury. In Campagnolo, DI and Kirshblum S, editors: *Spinal Cord Medicine (2nd edition)*. Philadelphia: Wolters Kluwer/Lippincott, Williams, and Wilkins, 2011.
138. Regan M, Teasell RW, Keast D, et al: Pressure Ulcers Following Spinal Cord Injury. In Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Mehta S, Sakakibara BM, editors. Spinal Cord Injury Rehabilitation Evidence. Version 3.0, 2010. Available at: <http://gneapp.info/wp-content/uploads/2014/12/pressureulcersfollowingspinalcordinjury.pdf>
139. Consortium for Spinal Cord Medicine: *Pressure ulcer prevention and treatment following spinal cord injury: a clinical practice guideline for healthcare professionals (2nd edition)*, Washington, DC, 2014, Paralyzed Veterans of America.
140. Kruger EA , Pires M, Ngann Y, et al: Comprehensive management of pressure ulcers in spinal cord injury: Current concepts and future trends. *J Spinal Cord Med.* Nov; 36(6): 572–585, 2013.
141. Gélis A, Dupeyron A, Legros P, et al: Pressure ulcer risk factors in persons with SCI: Part I: Acute and

rehabilitation stages. *Spinal Cord*. Feb;47(2):99-107, 2009.

- 142. National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel and Pan Pacific Pressure Injury Alliance. Prevention and Treatment of Pressure Ulcers: Quick Reference Guide. Emily Haesler (Ed.). Cambridge Media: Osborne Park, Australia; 2014. Available at: <https://www.npuap.org/wp-content/uploads/2014/08/Updated-10-16-14-Quick-Reference-Guide-DIGITAL-NPUAP-EPUAP-PPPIA-16Oct2014.pdf>
- 143. McInnes E, Jammali-Blasi A, Bell-Syer SE, et al: Support surfaces for pressure ulcer prevention. Cochrane Database Syst Rev. Sep 3;(9):CD001735, 2015. Available at: <http://cochranelibrary-wiley.com/doi/10.1002/14651858.CD001735.pub5/full>
- 144. Makhsous M, Priebe M, Bankard J, et al: Measuring tissue perfusion during pressure relief maneuvers: insights into preventing pressure ulcers. *J Spinal Cord Med*. 30(5): 497–507, 2007.
- 145. Sonenblum SE, Vonk TE, Janssen TW, et al: Effects of wheelchair Cushions and pressure relief maneuvers on ischial interface pressure and blood flow in people with spinal cord injury. *Arch Phys Med Rehabil*. Jul;95(7):1350-7, 2014.
- 146. Groah SL, Schladen M, Pineda CG, Hsieh CH: Prevention of pressure ulcers among people with spinal cord injury: a systematic review. *PM R*. Jun;7(6):613-36, 2015.
- 147. Smit CA, de Groot S, Stolwijk-Swuste JM, Janssen TW: Effects of electrical stimulation on risk factors for developing pressure ulcers in people with a spinal cord injury: a focused review of literature. *Am J Phys Med Rehabil*. Jul;95(7):535-52, 2016.
- 148. Liu LQ, Moody J, Trayno M, et al: A systematic review of electrical stimulation for pressure ulcer prevention and treatment in people with spinal cord injuries. *J Spinal Cord Med*. 37(6):703-718, 2014.
- 149. Harrington AL, Bockenek WL: Spasticity. In Campagnolo, DI and Kirshblum S, editors: *Spinal Cord Medicine (2nd edition)*. Philadelphia: Wolters Kluwer/Lippincott, Williams, and Wilkins, 2011.
- 150. Nielsen JB, Crone C, Hultborn H: The spinal pathophysiology of spasticity – from a basic science point of view. *Acta Physiol (Oxf)*. Feb;189(2):171-80, 2007.
- 151. Adams MM, Hicks AL: Spasticity after spinal cord injury, *Spinal Cord* 43:577-586, 2005.
- 152. Palazón-García R: Spasticity after spinal cord injury Part 1: clinical features. *J Neurolog Disord Stroke* 5(3): 1130, 2017.
- 153. Palazón-García R, Benavente-Valdepenas AM: Spasticity after spinal cord injury Part 2: Treatment. *J Neurolog Disord Stroke* 5(3): 1132, 2017.
- 154. Bryce TN, Biering-Sørensen F, et al: International Spinal Cord Injury Pain Classification: part I. background and description. *Spinal Cord* 50(6):413–417, 2012.
- 155. Bryce TN, Biering-Sørensen F, et al: International Spinal Cord Injury Pain (ISCI) Classification: Part 2. initial validation using vignettes. *Spinal Cord*. 50(6):404-12, 2012.
- 156. Widerström-Noga E, Biering-Sørensen F, et al: The international spinal cord injury pain basic data set (version 2.0). *Spinal Cord*. Apr;52(4):282-6, 2014.
- 157. Saulino M: Spinal cord injury pain. *Phys Med Rehabil Clin N Am* 25:397-410, 2014.
- 158. Widerström-Noga EG: Neuropathic pain after spinal cord injury. In Campagnolo DI and Kirshblum S, editors: *Spinal Cord Medicine (2nd edition)*. Philadelphia: Wolters Kluwer/Lippincott, Williams, and Wilkins, 2011.
- 159. Burke D, Fullen BM, Stokes D, Lennon O: Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. *Eur J Pain*. 21(1):29–44, 2017.
- 160. Teasell RW, Mehta S, Aubut JA, et al: A systematic review of pharmacologic treatments of pain after spinal cord injury. *Arch Phys Med Rehabil*. May;91(5):816-31, 2010.
- 161. Mehta S, McIntyre A, et al: Systematic review of pharmacologic treatments of pain after spinal cord injury: an update. *Arch Phys Med Rehabil*. Aug;97(8):1381-91, 2016.

162. Norrbrink C, Lundeberg T: Acupuncture and massage therapy for neuropathic pain following spinal cord injury: an exploratory study. *Acupunct Med* 29(108):108-115, 2011.
163. Estores I, Chen K, et al: Auricular acupuncture for spinal cord injury related neuropathic pain: a pilot controlled clinical trial. *J Spinal Cord Med.* Jul;40(4):432-438, 2017.
164. Finnerup NB, Jensen MP, Norrbrink C, et al: A prospective study of pain and psychological functioning following traumatic spinal cord injury. *Spinal Cord* 54:816-821, 2016.

Attachments

 [SPINAL CORD INJURY - BLADDER CATHETER REMOVA 2024.ppt](#)

Approval Signatures

Step Description	Approver	Date
Shock Trauma Quality Management	Susan Leone: Program Administrator	06/2024
Policy Owner	Karen McQuillan: Lead Clin Nurse Spec Stc	06/2024

Applicability

UMMC Downtown Campus

